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Abstract

Background—Missing data is prevalent in the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI). It is common to deal with missingness by removing subjects with missing entries prior to 

statistical analysis; however, this can lead to significant efficiency loss and sometimes bias. It has 

yet to be demonstrated that the imputation approach to handling this issue can be valuable in some 

longitudinal regression settings.

Objective—The purpose of this study is to demonstrate the importance of imputation and how 

imputation is correctly done in ADNI by analyzing longitudinal Alzheimer’s Disease Assessment 

Scale – Cognitive Subscale 13 (ADAS-Cog 13) scores and their association with baseline patient 

characteristics.

Methods—We studied 1063 subjects in ADNI with Mild Cognitive Impairment. Longitudinal 

ADAS-Cog 13 scores were modeled with a linear mixed-effects model with baseline clinical and 

demographic characteristics as predictors. The model estimates obtained without imputation were 

compared with those obtained after imputation with Multiple Imputation by Chained Equations 

(MICE). We justify application of MICE by investigating the missing data mechanism and model 

assumptions. We also assess robustness of the results to the choice of imputation method.

Results—The fixed-effects estimates of the linear mixed-effects model after imputation with 

MICE yield valid, tighter confidence intervals, thus improving the efficiency of the analysis when 

compared to the analysis done without imputation.

Conclusions—Our study demonstrates the importance of accounting for missing data in ADNI. 

When deciding to perform imputation, care should be taken in choosing the approach, as an 

invalid one can compromise the statistical analyses.
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Introduction

Missing data is a prevalent problem in large-scale studies like the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI). Age, invasive procedures, and progression of clinical 

conditions can dissuade patients from consistently participating in the study and can result in 

incomplete data [1]. A common practice is to omit subjects with missing entries and perform 

analyses on the remaining observations. However, when there is considerable missingness in 

the data set, this can lead to significant loss of statistical efficiency as a result of reduced 

sample size. In cases where the missingness disproportionately affects certain groups in the 

study sample, this omission may even lead to biased results [2–4]. Given the large amount 

of missingness in the ADNI data set, it is important to consider accounting for missing data 

when performing statistical analyses.

Rubin in [5] describes three general mechanisms that cause missing data. The mechanisms 

causing missingness in ADNI are investigated in [1]. The simplest possibility, missing 

completely at random (MCAR), occurs when patient characteristics do not affect 

missingness; rather, information is missing purely at random. The authors in [1] found 

that missingness in the ADNI data set is not MCAR, but depends on patient characteristics 

and that the cause also varies across biomarkers and clinical groups. In this case, data can 

either be missing at random (MAR) or missing not-at-random (MNAR). Data is MAR if 

missingness is related to observed data, but not to any unobserved data. If missingness 

is related to unobserved data, it is MNAR. The two cases, MAR and MNAR, cannot be 

distinguished from the data alone; doing so requires external information [1,2]. In this paper, 

we plan to study the association of baseline clinical features with longitudinal scores from 

the Alzheimer’s Disease Assessment Scale – Cognitive Subscale 13 (ADAS-Cog 13). We 

will use this as an example to illustrate the importance of accounting for missing data and 

demonstrate how to rigorously perform imputation in longitudinal models in ADNI.

The objective of our study is to illustrate the importance of accounting for MAR data 

in the longitudinal regression setting, an important regime for the study of Alzheimer’s 

Disease (AD) considering the intricate temporal patterns involving biomarkers and 

disease progression [6–8]. We also demonstrate how accounting for missing data via 

imputation is done correctly in the longitudinal setting. We focus on a particular method, 

Multiple Imputation by Chained Equations (MICE), an iterative regression-based procedure 

commonly used for MAR data [9]. We show that imputation results in greater statistical 

efficiency, evidenced by tighter confidence intervals around estimates compared to the 

available case analysis (ACA), which makes use of only the available data. We justify the 

use of MICE in our data set by assessing model assumptions and performing sensitivity 

analyses.

Methods of dealing with missingness in ADNI have been considered in [6,10,11]. However, 

these studies differ in contribution from this current paper because they either do not 

consider imputation methods for non-MCAR data or are concerned with imputation for 

classification purposes only. Separately, imputation for MAR data in AD risk analysis has 

previously been considered in [12]. The authors use MICE as part of a sensitivity analysis 
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to determine whether their main findings changed with imputed data; in so doing, they 

acknowledge the value of considering missing data when attempting to perform reliable 

statistical analyses in AD studies. However, this study does not look at imputation in 

a longitudinal setting, which has its own particular challenges, as we do in this paper. 

Additionally, we provide detailed discussions of the various statistical considerations that 

need to be made for proper imputation, such as analysis model assumption diagnostics, 

imputation model diagnostics, and efficiency comparisons between methods, the majority of 

which are not mentioned in [12]. Overall, while some studies exist which have considered 

missingness in ADNI, our paper makes a novel contribution by focusing on the increasingly 

relevant longitudinal regime and providing a detailed account of the various statistical 

considerations that have to be made to guarantee reliable imputation results.

We focus specifically on the association of baseline clinical features with longitudinal scores 

from the Alzheimer’s Disease Assessment Scale – Cognitive Subscale 13 (ADAS-Cog 13) 

– an exam widely used to assess cognitive dysfunction – among patients diagnosed with 

Mild Cognitive Impairment (MCI) [13]. We explore these associations in this study using 

the available case and using imputed data via MICE. We choose the ADAS-Cog 13 score, 

as opposed to other cognitive assessment scores available, because of its sensitivity for 

detecting progression of cognitive decline [14,15]. Furthermore, total ADAS-Cog 13 scores 

are not as susceptible to floor and ceiling effects as other assessment scores, making it more 

appropriate for use in a linear model [16,17]. Baseline clinical features of interest, shown 

in Table 1, are age, sex, years of education, reported family history of AD, baseline sum of 

boxes of Clinical Dementia Rating score (CDR-SB), levels of common cerebrospinal fluid 

(CSF) biomarkers of AD, and presence of the ε4 allele of the apolipoprotein E gene (APOE 

ε4). We included baseline CDR-SB as a predictor to mitigate the effects of left-censorship 

on our model. Specifically, because the disease duration of MCI patients is unknown at the 

time of enrollment, and because CDR-SB serves as a reasonable surrogate for this unknown 

duration [18–20], its inclusion as a predictor will improve the analysis model as well as 

imputation of missing variables. There are three core CSF biomarkers of AD: 42-amino acid 

β-amyloid peptide (Aβ42), phosphorylated tau protein (pTau), and total tau protein (tTau). 

In addition, biomarker ratios pTau/Aβ42 and tTau/ Aβ42 have been shown to be informative 

markers of disease state, with higher levels of both correlated with disease severity. Lower 

Aβ42 levels and higher pTau, tTau, pTau/Aβ42, and tTau/Aβ42 levels are consistently found 

amongst AD patients [6,7]. All five of these biomarkers are considered in our analyses. 

Presence of the APOE ε4 allele predicts progression to AD [6,21] and therefore may also be 

associated with cognitive performance.

Methods

Study Data

The data used for the statistical analyses in this article were from ADNIMERGE.csv, 

FAMXHPAR.csv, and FHQ.csv, all downloaded from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database on October 28th, 2021. We studied 1063 subjects 

diagnosed with Mild Cognitive Impairment (MCI). Study protocols describe follow-ups 

every 6 months from the initial visit until month 24. After month 24, subjects are followed 
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up once every 12 months. Cognitive, imaging, genetic, and biochemical data are collected 

during each visit.

Before performing any analyses, levels of CSF biomarkers were clipped at their technical 

limits as in [22–24]. For example, Aβ42 levels could only be detected within the range 

200 pg/ml to 1700 pg/ml. For subjects with levels outside of this range, those levels were 

reported as <200 or >1700. We set such values to their respective limits of 200 and 1700. 

Analogously, we clipped pTau and tTau levels at their respective technical limits.

FAMXHPAR.csv and FHQ.csv were used to obtain information about patient-reported 

family history of AD. Family history was said to be present if the patient reported either 

of their parents having AD. If the patient reported that neither parent had AD, family history 

was said to be absent. Any other response (unsure or no entry) was considered a missing 

value to be imputed.

Statistical Analysis

We are interested in the ability of baseline covariates of MCI patients to predict their 

average ADAS-Cog 13 score across visits. To explore this, we developed five linear 

mixed-effects models – each involving one of the CSF biomarkers – based on scientific 

and statistical considerations. We refer to these models as the analysis models. Biomarker 

ratios were log-transformed throughout the analyses. We check all five of the models’ 

underlying normality assumptions by graphical assessment of the distribution of estimated 

random intercepts. Then, the analysis models are fitted under two cases: with and without 

performing imputation beforehand. The results from these two different cases are then 

compared.

In order to fit the analysis models without imputation, we remove all subjects with any 

missing baseline measurements. We refer to this procedure as an available case analysis 
(ACA). We argue later in this section that the ACA is expected to produce valid inference – 

that is, that the fixed-effects and standard error estimates are all expected to be appropriate 

estimates of the true population quantities. However, since we are discarding potentially 

useful information, we may still suffer loss of statistical efficiency. As we expect both the 

ACA and imputation analysis to produce valid fixed-effects estimates, we can compare 

their statistical efficiencies based on estimated confidence intervals. A narrower confidence 

interval is indicative of a more efficient procedure.

Next, we fit the analysis models after imputing the missing data. We refer to this procedure 

as the imputation analysis, which we would like to compare with the ACA. The first 

step in designing an imputation procedure is to choose an imputation approach. We 

considered multilevel imputation with PAN to account for within-subject correlations. 

However, simulation studies suggest that imputation with PAN can be problematic under 

MAR data when missingness occurs in both the outcome and the predictors (Zhang P & Xie 

SX, unpublished manuscript). As a result, we decided to perform single-level imputation of 

our data with MICE, an iterative regression-based approach commonly used for MAR data.
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For each of the variables that we will impute (we will refer to these as target variables), 

we must specify a model which MICE will use to generate imputations. We design these 

so-called imputation models for ADAS-Cog 13, each of the five CSF biomarkers, and 

patient-reported family history of AD, since these are the variables with the most substantial 

missingness, and consequently for which proper imputation is most crucial for producing 

valid results (see Tables 1 and 2 for information about missingness for each variable). The 

design of the imputation models is driven by three primary factors [3]: first, every predictor 

in the analysis model should be included in the imputation models. Second, any variable that 

predicts missingness of a target variable should be included in its imputation model. These 

variables can be identified by univariate tests of association. Third, variables that can explain 

considerable variance in the target variable should be included in its imputation model.

We performed MICE for each of the five analysis models separately. We considered 50 

imputations based on recommendations from [25] with 40 maximum iterations of the MICE 

algorithm based on the convergence plots in Figure 1. Convergence is achieved when the 

lines – each tracking one of 50 imputations – stabilize around some mean and standard 

deviation region, which should be comparable to the means and standard deviations of the 

observed data set. Furthermore, the lines within a single graph should be intertwined, not 

showing any obvious trend. The results of the 50 imputations are pooled using Rubin’s 

Rules [3].

Numerical data were imputed by Bayesian linear regression, and categorical data by 

logistic regression. We also considered imputation by predictive mean matching (pmm) for 

numerical data to assess robustness to different imputation procedures. Because the original 

CSF measurements were clipped, we clipped imputed CSF values at their technical limits 

after imputation. Results are shown for Bayesian linear regression imputation after clipping, 

although we verified that the results did not change significantly whether Bayesian linear 

regression or pmm was used, and whether or not we performed clipping.

We imputed the time-varying outcome, ADAS-Cog 13 scores, only at times for which 

the proportion of data missing was below a specified tolerance, since imputations become 

increasingly dependent on the correctness of the chosen imputation model when there is a 

larger percentage of missingness [4]. We chose tolerances of 50% (wherein we tolerate times 

for which up to 50% of ADAS-Cog 13 scores are missing), 65%, and 75%, and compared 

results across the three tolerances.

In the following subsections, we develop the analysis and imputation models we will use for 

this study.

Analysis Model

The analysis model is motivated by the scientific objective. We are interested in the ability of 

baseline characteristics of MCI patients to predict their average ADAS-Cog 13 across visits. 

This motivates a linear mixed-effects model as our analysis model, with longitudinal ADAS-

Cog 13 as our outcome and time (in months), sex, age, years of education, self-reported 

family history of AD, APOE ε4 allele presence, baseline CDR-SB score, and baseline 
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CSF level as predictors. Since there are five CSF biomarkers, we really have five separate 

analysis models, each using a different biomarker as a predictor.

The mixed-effects model assumes a normal distribution on the random intercept. To assess 

adherence to this assumption, we plotted the histograms of the random intercepts for each 

of the five models when fitted with the available cases. The plots are shown in Figure 

2 and they appear to fit a normal distribution well. It is important to note, however, that 

normality of the random intercept is a tricky assumption to verify, particularly due to 

the intangible nature of unobservable quantities like random effects [26]. Therefore, while 

it is still important to check these assumptions to detect egregious violations [27], the 

reader should keep in mind the limitations of such tests. It is encouraging, however, that 

fixed-effects and variance estimates for linear mixed-effects models seem reasonably robust 

to deviations from the normality assumption (though the same cannot be said of nonlinear 

models like the generalized linear mixed models) [26–29]. Altogether, these findings suggest 

that our model is still reasonable.

To be able to compare efficiencies of the ACA and the imputation analysis, we must 

establish validity of the ACA for these analysis models. In regression settings, including 

longitudinal regression, ACA on MAR data can still produce valid inference under certain 

conditions on the analysis model. Namely, if missingness of the covariates is independent 

of observed outcome values conditional on observed covariates, and if the ADAS-Cog 13 

outcome is missing at random, the fixed-effects estimates of the ACA will be valid [30,31]. 

Therefore, to assess validity of the ACA, we first perform a multivariate logistic regression 

where the outcome is the missingness incidence of our target covariate and the baseline 

ADAS-Cog 13 score is a predictor, along with all the baseline covariates. We need not test 

association with ADAS-Cog 13 scores later than at baseline since our covariate missingness 

only occurs in baseline covariates.

Since we have five analysis models, we need to check that all of them will be valid by 

performing multivariate tests for each. Conditional on all other baseline covariates in the 

analysis models, ADAS-Cog 13 score at baseline was not associated with missingness in 

CSF measurement (odds ratio of 1.00 with 95% CI 0.98–1.03). For all five analysis models, 

we find no association between missingness of patient-reported family history and baseline 

ADAS-Cog 13 (odds ratio of 1.00 with 95% CI 0.98–1.03 for the three models with absolute 

CSF biomarkers, and odds ratio of 1.01 with 95% CI 0.98–1.04 for the two models with 

ratio biomarkers). These results suggest that the missingness of covariates is independent of 

observed outcome values conditional on observed covariates.

The second necessary condition to establish validity of the ACA is that the ADAS-Cog 

13 outcome is MAR. Without additional information beyond observed data, it is inherently 

impossible to statistically determine whether the data is MAR or MNAR. This assessment 

needs to be made based on clinical expertise and knowledge of the data collection [2,3]. We 

have searched the literature related to ADNI study design and have not found scientific 

reasons against the MAR assumption of the outcome. Given the absence of scientific 

evidence against the MAR assumption, we use MAR as a starting point, which is often 

sensible to begin with [3]. Significant deviations from the MAR assumption may manifest in 
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diagnostic plots for the imputed data [3]. These diagnostic plots are used to explore possible 

evidence of deviations from the MAR assumption. They are discussed in the Results section, 

wherein we conclude that we have not found evidence against the MAR assumption for the 

longitudinal ADAS-Cog 13 score. Thus, for this study, we consider the outcome data to 

be MAR. Taken together, the assessment of the two necessary conditions suggests that the 

fixed-effects estimates of the ACA will produce valid inference.

Imputation Model

To perform imputation with MICE, we must first decide which variables to include in the 

imputation models. As per guidelines in [3], the imputation model for a target variable 

should include every variable in the analysis model and variables with explanatory power 

for that target variable. Furthermore, variables that predict missingness of the target variable 

should be included in its imputation model. In our case, [1] provides reason to believe 

that there are variables beyond those in our analysis model that should be included in the 

imputation model for CSF biomarkers because of association with their missingness. In 

particular, they found that family history of AD was associated with missingness of baseline 

CSF biomarker measurements. We tested this again with the larger data set that has become 

available since the mentioned article and found consistent results (odds of missingness of 

CSF at baseline decreases by a factor of 0.46 (95% CI: 0.33–0.66) with reported family 

history of AD). Our final imputation models for CSF biomarkers, patient-reported family 

history of AD, and ADAS-Cog 13 scores are as follows. The variable to the left of the 

tilde is the variable that needs to be imputed, while variables to the right are all covariates. 

Parentheses indicate time; for example, ADAS13(0) is the ADAS-Cog 13 score at month 0, 

i.e. baseline.

CSFbl AGE + GENDER + EDUCAT + APOE4 + CDRSBbl + FamHist + ADAS13 0

FamHist AGE + GENDER + EDUCAT + APOE4 + CDRSBbl + CSFbl

ADAS13 t AGE + GENDER + EDUCAT + APOE4 + CDRSBbl + FamHist + CSFbl + ADAS13 t1 + . . .
+ ADAS13 tk

In the imputation model for ADAS-Cog 13 scores, we only impute scores collected at 

times t for which the missingness incidence of ADAS-Cog 13 scores was below the chosen 

tolerance (50%, 65%, or 75%). As predictors for this imputation model, we include ADAS-

Cog 13 at times t1 through tk, which are all the times for which the missingness was below 

the tolerance, excluding time t itself (since a target variable should not be included as a 

predictor in its own imputation model).

It is worth noting that the times t1 through tk may include times after t – that is, the 

imputation of the scores at time t may include scores in future times as predictors. However, 

this should not be taken as a statement about the influence of future measurements on past 
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measurements. Rather, it is simply a way to improve predictive accuracy of the imputation 

model on ADAS-Cog 13 scores. Indeed, as discussed earlier, variables were included in the 

above imputation models based on guidelines in [3], one of which is that variables with 

explanatory power for target variables should be included in their imputation. This improves 

predictive accuracy of the target variable, improving the quality of the imputed data sets. To 

that end, in our model ADAS-Cog 13 scores at time t are imputed with those at other times, 

past or future. Nevertheless, the imputation model could still be designed to include only 

those times prior to t; we verified that this valid alternative approach does not reduce the 

quality of the imputed data sets or change the qualitative results of this particular study.

In imputing CSF values with Bayesian linear regression, we assume a linear relationship 

between the CSF values and the predictors of our imputation model. We assess the validity 

of this model visually with the residual plots of the imputation models. As an example, 

consider the imputation model for tTau:

tTAUbl AGE + GENDER + EDUCAT + APOE4 + CDR SBbl + FamHist + ADAS13 0

The top-left plot of Figure 3 shows the residuals from the above model fitted to the 

observed (i.e. not imputed) values in the tTau model. The residuals are mean-zero with 

similar variance across fitted values, indicating adherence to a linear relationship. We also 

checked the distribution of residuals from the imputation models using a histogram and 

a quantile-quantile plot (top-center and -right of Figure 3). The plots show a reasonable 

adherence to a normal distribution. We arrive at the same conclusion for the imputation 

models for the other four CSF biomarkers.

The same diagnostics can be applied to the imputation of the longitudinal outcome. We 

assessed the validity of the linear model of ADAS-Cog 13 scores with the same procedure 

we used above for the tTau imputation model. Since there are multiple imputation models 

for ADAS-Cog 13 (one for each time point), we performed the diagnostics for each one. 

The bottom row of Figure 3 shows the same plots as with the tTau imputation model for the 

ADAS-Cog 13 model at month 6. The plots also show a reasonable adherence to a normal 

distribution, as do those for the scores at all other time points, though these are not shown.

Results

Demographic Data

Table 1 provides baseline demographic information for the 1063 subjects in this study. The 

proportions of values missing are also provided. Family history of AD and baseline CSF 

measurements have the most significant missingness – nearly 50%.

Available Case Analysis

The results of the ACA are shown in Figure 4 for the Aβ42, pTau, and tTau analysis models, 

and in Figure 5 for the pTau/Aβ42 and tTau/Aβ42 models, in the columns labeled ACA. 

Point estimates for predictors are shown along with their confidence intervals. The figures 

selectively show results for salient features (Age at baseline, APOE ε4 allele presence, CSF 
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biomarker level at baseline, and years of education); the complete results can be found in 

Supplementary Tables 1 and 2. The ACA reduces our available data set to 301 subjects, less 

than one-third of the number of subjects in our complete data set. However, since we expect 

the ACA to produce valid inference, our fixed-effects estimates should still be reliable, and 

we can check that they align with clinical expectations. The effects of visit time and age are 

positive, which is in line with our expectation that cognitive performance will progressively 

decline on average over time and with age in the MCI group (higher ADAS-Cog 13 scores 

reflect greater cognitive impairment). Decreasing Aβ42 and increasing values of the other 

four biomarkers are also associated with poorer cognitive function [6,7], in line with our 

estimates. APOE ε4 allele presence is associated with lower cognitive performance [21,32], 

although in the Aβ42 and ratio biomarker models the ACA estimate is not significant.

Imputation Analysis and Imputation Model Diagnostics

Results presented in the MICE columns of Figures 4 and 5 are for the case of 50% 

missingness tolerance and Bayesian linear regression with clipping of CSF values at their 

technical limits. From Table 2, we see that a tolerance of 50% would allow us to impute 

ADAS-Cog 13 scores at visit times 0, 6, 12, 24, and 36 months. Before we compare the 

results of the mixed-effects models between the available and imputed cases, we must first 

ensure that our imputed data sets look reasonable. Since CSF measurements, family history, 

and ADAS-Cog 13 scores are our major sources of missingness, we focus on assessing their 

imputed values.

To ensure that imputed values are reasonable, we look at boxplots of a subset of the 50 

imputed data sets for the CSF values, which had significant missingness, alongside boxplots 

of the observed data. These plots are shown in Figure 6. Since CSF is clipped, we see 

the same upper and lower bounds for the distribution of the imputed data sets as for the 

observed data. As mentioned previously, whether or not we clipped did not have an impact 

on the qualitative results discussed in this section. Importantly, the median, range, and 

interquartile range of the imputed data sets are comparable to those of the observed data.

We also look at the proportions of subjects with and without patient-reported family history 

of AD. Figure 7 displays these proportions for the observed data (in black) and for the first 

15 imputed data sets (the different shades of blue). In the observed data set, we see that 

about 60% of subjects reported family history of AD while the other 40% reported no family 

history of AD. The imputed data sets have proportions comparable to these, giving some 

evidence that they are reasonable imputations.

Since we have also imputed the time-varying outcome, we analyze the plots shown in 

Figure 8 of the behavior of imputed ADAS-Cog 13 scores for the tTau model. We use 

months 12 and 36 as illustrative examples. The top two boxplots in Figure 8 show that 

the median and interquartile range of the imputed data sets are comparable with those of 

the observed data for both months 12 and 36. However, the range of the imputed data 

sets exceeds the range of the observed data sets. Indeed, ADAS-Cog 13 scores are values 

between 0 and 85, but the imputed values are not restricted to this possible range. It is 

not always necessary that individual values be realistic, so long as sample estimates, like 

mean and standard deviation, are preserved in the imputed data sets [33]. Still, to assess 
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robustness we performed our analyses again using predictive mean matching for ADAS-Cog 

13 scores. The results regarding estimates and confidence intervals are nearly identical to 

those obtained by using Bayesian linear regression, so our interpretations remain the same. 

The bottom two plots in Figure 8 show the behavior with predictive mean matching of the 

imputed ADAS-Cog 13 scores at 12 and 36 months, which now take on only values between 

0 and 85. Though not shown in the figure, these are also nearly identical to results obtained 

when using yet another imputation method: Bayesian linear regression followed by clipping 

imputed values between 0 and 85.

Figure 8 also gives us some insight into the MAR assumption for the longitudinal outcome 

of ADAS-Cog 13 score. As mentioned previously, without additional information beyond 

observed data, it is inherently impossible to statistically determine whether the data is MAR 

or MNAR [2,3]. However, significant deviations from the MAR assumption may manifest in 

diagnostic plots for the imputed data, such as Figure 8 of our study, in which the differences 

between the distributions of the observed data (blue) and imputed data (red) could end 

up being very different [3]. It is encouraging, in our case, that those distributions appear 

very similar, as displayed in Figure 8. Thus we have not found evidence against the MAR 

assumption for the longitudinal ADAS-Cog 13 score.

To be able to compare ACA with MICE results, we must ensure that the estimates do not 

deviate far from those of the ACA, as this would indicate bias in our imputation model. 

We can get a rough sense of whether the estimates are reasonably close to each other by 

observing whether their confidence intervals overlap. All of our estimates are reasonably 

close to the ACA estimates by this standard, as can be seen in Figures 4 and 5, and further 

verified with Supplementary Tables 1 and 2.

We see that, for the Aβ42 and pTau/Aβ42 models, the confidence intervals surrounding the 

APOE ε4 estimate has become tighter, and now indicates a significant effect. This is not 

surprising given that with imputation we are able to recover the remaining two-thirds of 

the subjects, drastically increasing our available data set. As mentioned earlier, this is in 

line with clinical expectations [21,32]. For the tTau/Aβ42 model, the estimate has become 

tighter after imputation, but not enough to indicate a significant effect. For the pTau and tTau 

models, APOE ε4 is significant already in the ACA, with confidence intervals becoming 

even tighter after imputation. Also worth noting are the tighter confidence intervals around 

the Age estimates, which become significant after imputation for the analysis models with 

pTau/Aβ42 and tTau/Aβ42, as well as the education estimates, which become significant 

across all five analysis models after imputation. There are some studies which are in line 

with this finding regarding education [34,35], while others do not find any significant 

association between ADAS-Cog scores and education level [14].

When performing these same analyses for tolerances 65%, and 75%, we draw the same 

conclusions described above for all of the results. Overall, these results demonstrate the 

increased statistical efficiency of the imputed data analysis over the ACA.

Chandrasekaran et al. Page 10

J Alzheimers Dis. Author manuscript; available in PMC 2024 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

In this study we illustrated the importance of imputation in a longitudinal analysis of the 

ADNI data set. We demonstrated that MICE provides improvement in statistical efficiency 

compared to the ACA while still producing valid inference. Of note, across the five models 

we see tighter confidence intervals around the effect of APOE ε4 allele presence and 

education level. For all models, we see that the effect of education level becomes significant 

after imputation. These significant effects can be interpreted as a strong association between 

education level and average ADAS-Cog 13 scores across visits, controlling for other 

baseline features.

We verified the normality assumptions of the mixed-effects model by showing that 

random intercept estimates appear normally distributed. We assessed the validity of a 

linear relationship between baseline CSF measurements and other baseline features in our 

imputation model. Our residual plot shows that this relationship is reasonable, and the 

residuals from the imputation model appear normally distributed.

We assessed robustness of results to various tolerances of missingness: 50%, 65%, and 75%. 

Estimates and confidence intervals were similar across all tolerances, leading to the same 

interpretations in the Results section for all cases.

While we reported results for imputation of numerical variables with Bayesian linear 

regression, we found that results held when using predictive mean matching. In particular, 

they were robust to the choice between Bayesian linear regression and predictive mean 

matching for the ADAS-Cog 13 scores, which has a range of values between 0 and 85 that 

is not captured by Bayesian linear regression as it is in pmm. The results were also nearly 

identical if we performed Bayesian linear regression followed by clipping imputations 

between 0 and 85. This robustness is not surprising since, as discussed in the Results 

section, the purpose of imputation is not necessarily to draw realistic values, but to preserve 

sample-level properties like mean and standard deviation. Results were also nearly identical 

whether or not we clipped CSF values at their technical limits.

Our study demonstrates the importance of accounting for missing data in the ADNI data 

set. When deciding to perform imputation, care should be taken in choosing the approach, 

as an invalid one can compromise the statistical analyses. The mechanism of missing data 

generation, choice of imputation procedure and imputation methods, and assumptions of the 

imputation procedure should all be scrutinized. While we chose MICE as our imputation 

procedure for this study, it would be interesting to compare the results of the mixed-effects 

model under other appropriate methods, e.g. random forest imputation. Sometimes, the 

parametric assumptions of imputation models may be violated after model diagnostics. In 

those situations, other more robust and/or nonparametric models should be employed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Mean (left) and standard deviation (right) of imputed values for different variables across 

iterations for the Aβ42 model. Each line (represented by a different color) is one of 50 

imputations. Each of the three rows is for a different variable being imputed. Convergence is 

achieved when the lines stabilize at some mean and standard deviation region, and so long as 

there is no observable trend between the 50 imputation lines.
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Figure 2: 
Distributions of random intercepts from the ACA for each of the five models: Aβ42 (top 

left), pTau (top right), tTau (middle left), log-transformed pTau/Aβ42 (middle right), and 

log-transformed tTau/Aβ42 (bottom).
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Figure 3: 
(top left) Residual plot of linear model when observed tTau (not imputed) is the dependent 

variable and the independent variables are baseline features (Age, Sex, Education, APOE4, 

Family History of AD, baseline CDR-SB, and baseline ADAS-Cog 13). The x-axis (the 

fitted values) is estimated tTau values from the linear model. (top center) Histogram of 

standardized residual values from the same model. (top right) Quantile-quantile plot of 

standardized residual values from the same model. Theoretical quantiles are for the standard 

normal distribution. (bottom row) The same set of plots as in the top row, but for the linear 

model when observed ADAS-Cog 13 score at month 6 (not imputed) is the dependent 

variable and the independent variables are baseline features (Age, Sex, Education, APOE4, 

Family History of AD, baseline CDR-SB, and tTau) and ADAS-Cog 13 scores at all other 

times for which missingness was below 50% tolerance, with the exception of month 6 (since 

this is the month considered in the dependent variable).
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Figure 4: 
Comparison of ACA and MICE estimates with 95% confidence intervals for the effect of 

Age at baseline, APOE ε4 allele presence, CSF level at baseline, and level of education. 

(top row) Aβ42 analysis model, (middle row) pTau analysis model, and (bottom row) tTau 

analysis model. Black dots represent the estimates for the quantities in the subplot titles. 

Confidence intervals which cross the dashed line at 0 suggest that the estimate is not 

significant.
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Figure 5: 
Comparison of ACA and MICE estimates with 95% confidence intervals for the effect of 

Age at baseline, APOE ε4 allele presence, CSF level at baseline, and level of education. 

(top row) pTau/Aβ42 analysis model and (bottom row) tTau/Aβ42 analysis model. Black dots 

represent the estimates for the quantities in the subplot titles. Confidence intervals which 

cross the dashed line at 0 suggest that the estimate is not significant.
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Figure 6: 
Boxplots of observed and imputed CSF values for each of the five models for the first 15 

imputations: Aβ42 (top left), pTau (top right), tTau (middle left), log-transformed pTau/Aβ42 

(middle right), and log-transformed tTau/Aβ42 (bottom). Observed data are shown in blue 

and imputed data sets are in red. Only the first 15 of the 50 imputed data sets are plotted.
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Figure 7: 
Marginal proportion of presence (TRUE) or absence (FALSE) of patient-reported family 

history of AD. Black bars are observed data while blue bars are each different imputed data 

sets from the tTau model. Only the first 15 of the 50 imputed data sets are plotted. Plots were 

generated by the propplot function obtained from GitHub.

Chandrasekaran et al. Page 21

J Alzheimers Dis. Author manuscript; available in PMC 2024 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 
Boxplots of observed and imputed ADAS-Cog 13 values for the tTau models for the first 15 

imputations at 12 months (left) and 36 months (right). (top) data imputed by Bayesian linear 

regression. (bottom) data imputed by predictive mean matching. Observed data are shown in 

blue and imputed data sets in red. Only the first 15 of the 50 imputed data sets are plotted.
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Table 1:

Demographic analysis of baseline information for MCI patients.

% missing (n missing)

Age at baseline a 72.9 (7.6) 0.4 (4)

Sex (male %) 58.9 % 0 (0)

APOE ε4 (%) 49.7 % 4.6 (49)

Education (years) b 16 (14–18) 0 (0)

CDR-SB at baseline a 1.53 (0.92) 0 (0)

Family history AD (%) 59.9 % 48.4 (515)

Aβ 42 
b 836.8 (609.9 – 1308.0)

pTau b 24.0 (17.4 – 34.3)

tTau b 256.5 (192.0 – 343.4) 42.0 (446)

log(pTau/Aβ 42 ) b −3.50 (−4.3 – −2.9)

log(tTau/Aβ 42 ) b −1.1 (−1.9 – −0.6)

a
Mean (Standard deviation) n=1063

b
Median (1st and 3rd quartiles)
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Table 2:

Percentage of ADAS-Cog 13 scores missing for each visit time in the protocol within the first 72 months. For 

all other months, missingness prevalence is greater than 85%.

Visit time (months from baseline) % ADAS-Cog 13 missing

0 0.56 %

6 24.37 %

12 16.09 %

18 69.24 %

24 32.36 %

36 44.40 %

48 62.65 %

60 77.42 %

72 83.54 %
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